Planned ISS SSTV Activity 24/12/2020 – 31/12/2020

20 Years of ARISS Operations on the ISS

According to a post on the ARISS SSTV Blog it appears that there are plans for another SSTV activity period over Christmas. This announcement is subject to crew duties and operational constraints on the station.

Posted on Friday, 11 December, 2020 by ariss-sstv.blogspot.com.

ARISS 20 years of operations on ISS (SSTV event)

An ARISS Slow Scan TV (SSTV) event is scheduled from the International Space Station (ISS) for late December. This will be a special SSTV event to celebrate the 20th anniversary of ARISS operations on the ISS. The latest schedule is:

  • 16:40 UTC 24 December 2020 – Activity begins
  • 18:15 UTC 31 December 2020 – Activity ends
  • The activity is understood to be continuous through this period

Dates and times are subject to change due to ISS operational adjustments.

Historically, images are downlinked at 145.800MHz FM +/- 3kHz for Doppler shift and the expected SSTV mode of operation is PD 120.

There is an official European Space Agency (ESA) video about receiving SSTV from the ISS using the web SDR at Goonhilly for those who don’t have a capability to receive on 145.800MHz. You can see the video here: ESA ISS SSTV Video. For those interested in doing their own reception and decoding either live or after the event using recordings made during the passes for subsequent decoding the AMSAT website has a good primer that will serve as a good reference for those more experienced too.

We encourage you to have a try at receiving and decoding these images, you do not need specialist equipment, Kevin M7AWX was successful with just a handheld, set-top whip and Robot36 on a ‘phone within 2 weeks of passing his Foundation exam so don’t be put off; give it a try. Any images you receive can be included on the Club website if you send them to us, contact details at the bottom of this screen.

A table of approximate pass times, durations and directions will be provided in the table at the bottom of this post. The table is based on the Clubhouse as its location but it should be accurate enough for most people in and around Bristol. The further you are from the Clubhouse the greater the error and below the Clubhouse table are details of how to obtain your own pass predictions. If you are planning on using the Gooonhilly Web SDR as a receiver as described in the ESA video linked to earlier in this page then you are advised to run your own pass predictions as shown in the ESA video or outlined at the bottom of this page.

SSTV Programs are available for all platforms so no matter what you use there’s probably something to decode the image:

  • Linux including Raspbian on the Raspberry Pi – QSSTV can be found at users.telenet.be/on4qz/qsstv/index.html if you want the absolute latest version. However Debian based distros such as Ubuntu, Mint and others almost certainly will have QSSTV in their repositories as will other mainstream distros.
  • Windows – MMSSTV can be found at hamsoft.ca/pages/mmsstv.php.
  • Mac OSX – MultiScan can be found at www.qsl.net/kd6cji.
  • Android – Robot36 can be installed from the PlayStore and includes both PD180 and PD120. Not sure what minimum version of Android it wants but it runs without issue on Android 6 which is reasonably long in the tooth.
  • iOS – Black Cat Systems sstv-slow-scan-tv.

For those who like real time information the Android App AmSatDroid Free is one of a number of live satellite trackers available for Android. Similar apps are available for iOS, a simple example is ISS Spotter.

Table of ISS Passes

Novers Park Community Association, Rear of 124 Novers Park Road, Bristol, BS4 1RN

Latitude (degrees N-S where North is +ve): 51.425400°
Longitude (degrees E-W where East is +ve): -2.593882°
IARU (Maidenhead) Locator: IO81qk
Elevation (metres above Ordnance Datum AOD): 64m

Notes:

In the table below:

  1. Table Entries with no background colour indicate passes where: 0° < Maximum Elevation ≤ 30°
  2. Table Entries with a yellow background indicate passes where: 30° < Maximum Elevation ≤ 45°
  3. Table Entries with a green background indicate passes where: 45° < Maximum Elevation ≤ 90°
  4. Azimuth or Bearings are measured in degrees clockwise from North
Pass No. Date (UTC) Acquisition of Signal “AoS” Maximum Elevation Loss of Signal “LoS” Pass Duration
(Hr:Min:Sec)
Time (UTC) Azimuth or Bearing Degrees Above the Horizon Azimuth or Bearing Time (UTC) Azimuth or Bearing
1 24/12/20 12:40:02 268 5 227 12:46:40 192 00:06:38
2 25/12/20 03:50:27 173 6 132 03:57:32 90 00:07:05
3 25/12/20 05:24:44 222 27 167 05:35:10 76 00:10:26
4 25/12/20 07:01:01 256 81 177 07:11:51 81 00:10:50
5 25/12/20 08:37:50 277 88 253 08:48:52 99 00:11:02
6 25/12/20 10:14:37 284 35 192 10:25:14 131 00:10:37
7 25/12/20 11:51:53 275 8 234 12:00:08 176 00:08:15
8 26/12/20 03:04:17 154 2 141 03:09:01 101 00:04:44
9 26/12/20 04:37:25 211 21 153 04:47:26 77 00:10:01
10 26/12/20 06:13:22 248 68 159 06:24:17 78 00:10:55
11 26/12/20 07:50:09 273 85 343 08:01:05 93 00:10:56
12 26/12/20 09:26:56 284 49 191 09:37:44 122 00:10:48
13 26/12/20 11:03:57 279 13 219 11:13:09 163 00:09:12
14 27/12/20 03:50:12 200 15 140 03:59:34 80 00:09:22
15 27/12/20 05:25:46 240 52 147 05:36:35 77 00:10:49
16 27/12/20 07:02:26 268 84 340 07:13:23 88 00:10:57
17 27/12/20 08:39:15 282 64 193 08:50:08 114 00:10:53
18 27/12/20 10:16:07 282 19 223 10:26:00 151 00:09:53
19 27/12/20 11:54:48 255 1 242 11:58:21 216 00:03:33
20 28/12/20 03:03:13 187 9 147 03:11:43 84 00:08:30
21 28/12/20 04:38:13 231 38 138 04:48:53 76 00:10:40
22 28/12/20 06:14:43 262 88 290 06:25:46 84 00:11:03
23 28/12/20 07:51:33 280 78 198 08:02:28 106 00:10:55
24 28/12/20 09:28:21 284 26 228 09:38:40 141 00:10:19
25 28/12/20 11:06:03 268 5 227 11:12:43 191 00:06:40
26 29/12/20 02:16:28 173 6 131 02:23:34 90 00:07:06
27 29/12/20 03:50:44 221 27 167 04:01:10 76 00:10:26
28 29/12/20 05:27:01 255 81 176 05:37:53 81 00:10:52
29 29/12/20 07:03:50 277 88 257 07:14:48 99 00:10:58
30 29/12/20 08:40:37 284 35 192 08:51:14 131 00:10:37
31 29/12/20 10:17:51 275 8 235 10:26:07 176 00:08:16
32 30/12/20 01:30:18 153 2 141 01:35:02 101 00:04:44
33 30/12/20 03:03:22 211 20 152 03:13:23 77 00:10:01
34 30/12/20 04:39:19 248 67 159 04:50:14 78 00:10:55
35 30/12/20 06:16:05 273 85 343 06:27:02 93 00:10:57
36 30/12/20 07:52:53 284 49 191 08:03:40 122 00:10:47
37 30/12/20 09:29:53 279 13 219 09:39:06 163 00:09:13
38 31/12/20 02:16:09 200 14 139 02:25:31 80 00:09:22
39 31/12/20 03:51:41 240 52 147 04:02:30 77 00:10:49
40 31/12/20 05:28:20 268 84 340 05:39:17 88 00:10:57
41 31/12/20 07:05:09 282 64 193 07:16:02 113 00:10:53
42 31/12/20 08:42:01 282 19 223 08:51:55 151 00:09:54
43 31/12/20 10:20:39 256 1 243 10:24:40 212 00:04:01
44 01/01/21 01:29:07 187 9 147 01:37:35 84 00:08:28

If you want to run your own location specific pass predictions try using:

The AMSAT site will require either:

  • Method 1
    • Your 6 character IARU (Maidenhead) locator square (e.g. IO81qk); and
    • Your elevation in metres (e.g. 64).
  • Method 2
    • The absolute (without +ve or -ve sign) value of your Latitude in decimal degrees and selecting North where the original value is positive (greater than 0) or selecting South where the original value is negative (less than 0) (e.g. 51.4254 North);
    • The absolute (without +ve or -ve sign) value of your Longitude in decimal degrees and selecting East where the original value is positive (greater than 0) or selecting West where the original value is negative (less than 0) (e.g. 2.593882 West);
    • Your elevation in metres (e.g. 64).

The Heavens Above site is more flexible and will accept any of:

  • Method 1
    • Your address including postcode (e.g. Novers Park Community Association, Rear of 124 Novers Park Road, Bristol, BS4 1RN); and
    • Your elevation in metres (e.g. 64).
  • Method 2
    • Your What.Three.Words location descriptor (e.g. ///weeks.exams.flight); and
    • Your elevation in metres (e.g. 64).
  • Method 3
    • Your Latitude in decimal degrees where +ve is north of the equator and -ve is south of the equator (e.g. 51.4254);
    • Your Longitude in decimal degrees where +ve is east of the Greenwich Meridian and -ve is west of the Greenwich Meridian (e.g. -2.593882); and
    • Your elevation in metres (e.g. 64).

When using Heavens Above don’t forget to check that you have the correct timezone (e.g. (GMT +0:00) United Kingdom/Ireland)

Heavens Above understands British Summer Time and corrects accordingly

About Andy (G7KNA) 208 Articles
BEng CEng MICE. Chartered Civil Engineer and Licensed Radio Ham (G7KNA). Member of South Bristol Amateur Radio Club since 2005 and Secretary since 2010. Away from the club and work I play with computers and related gadgets exploring Open Source software and when necessary bodge the odd DIY project.